Dipl. Geogr. Konstantin GREGER

筑波大学 – University of Tsukuba Tsukuba, Japan

greger@geoenv.tsukuba.ac.jp http://www.konstantingreger.net Ludwig-Maximilians-Universität München Munich, Germany

Spatial Analysis of Large-Scale Man-Made Disasters Using GIS An Exemplary Implementation for Air Traffic Incidents –

Motivation

A GIS tool was developed and implemented to prove the

Methodology

Analysis was based on two datasets: a unique air traffic

existence and measure the significance of certain factors, that influence the occurrence and distribution of man-made disasters, using geo-statistical methods. In expert talks with insurance underwriters it was mentioned that the incident locations and their spatial surroundings (substantiated on a per-country basis) were of great interest.

Approach

Air traffic incidents not happening during cruise flight (i.e. during parking, taxiing, take-off or landing) were chosen as exemplary topic for a prototype implementation of this approach. Research was focused on the correlation between the incidents themselves and the safety levels of the airports they were happening at or close to. The severity of the incidents (Incident Severity Index – ISX) was parameterized by the incident database (property of Munich Re) and the Digital Aeronautical Flight Information File (DAFIF) provided by the United States National Geospatial-Intelligence Agency (NGA). Both databases contain extremely detailed information about the incidents and the airport safety features, respectively. For the analysis both descriptive statistics (e.g. minimum, maximum, mean, median, skewness) as well as spatial (Moran's I, semivariogram) and non-spatial correlation measures (Pearson Product Moment Correlation Coefficient r) were used.

Results

Due to missing calibration of the model no statistical correlation of the selected variables could be proven in the course of research. Yet, descriptive statistics revealed a correlation between the airport safety standards and its location.

bodily injury and the tangible loss. The availability of certain safety features as well as the location and spatial surroundings of the respective airports were used to define the prevalent safety standard (Airport Safety Index – ASX).

NEW JERSEN

NEW YORK

1/29 NEWARK LIBERTY INTL (KEWR)

22,6 km

JOHN F KENNE

As a result of this conceptual study about the meaningfulness and usefulness of spatial analysis of man-made disasters the following statements can be made:

•Large-scale man-made disasters are related to the spatial surroundings they are happening in.

- •This correlation can be operationalized on a per-country basis.
- •A semantically, spatially, and timely consistent collection and preparation of the data being used is imperative.

tblflSCompo. comp_type comp_name _count tblflSCategory ts_cat cat_name _count tblflSNav1ype naw_type type_name _count rwy_ident
comp_type
colctn
iis_name
freq
chan
gs_angle
lczr_gslctn
loc_mkrlctn
elev
iis_cat
wgs_lat
wgs_olong
wgs_diat
wgs_olong
moong
nav_ident
nav_type
mag_var
slave_var
is_brg
loc_width
thd_crossing_hgt
dme_bias thArportSe mk_ident arpt_ident type rmk_seq remark TD CNAME_EN ISO31661_A2 ISO31661_A2 ISO31661_A3 FIPS104 NATO_A2 NATO_A3 CONTINENT clickuwsey
control to the second Erpt ident
 fips104
 state_prov
 arpt_name
 icao
 faa_host_id
 wgs_lat
 wgs_lat
 wgs_lat
 wgs_long
 wgs_dlong
 wlong
 elev
 use_type
 mag_var
 wac
 beacon
 opr_agy
 second_arpt
 sec_name
 sec_faa
 sec_opr_agy
 dty_croup
 dear_status
 utm_grid
 ut_time
 tolRunwaysio
 suf_description
 _count tblRunwayEod rwy_dent rwy_dent rwy_end_name hdg wgs_dat wgs_dat wgs_dat wgs_dong wgs_dong mong elev slope tdze dt tblAirportSer... type type_name __count

