Why Visual Data Analysis is Great

Wow, another year has passed and so much has happened in the meantime!

During my job at the Institute for Transport Research at the German Aerospace Center (DLR) in Berlin I not only worked on the theoretical underpinnings and actual development and implementation of micro-scale traffic models but was obviously also involved in publicizing the results of said models and also other research work. I did this mostly with R, Shiny, PostgreSQL/PostGIS, QGIS and the occasional line of Python code sprinkled in-between. They’re all great. I love them with all my heart and enjoy every second I’m working with one of them. But I found it increasingly hard to visualize data easily and quickly while still being pretty. Sure R and ggplot allow for camera-ready plots, Shiny and Leaflet make it increasingly easy to put together interactive plots and maps. But sometimes fiddling with their settings and writing the necessary code is just not practical to get to the point quickly. Also, during the fascinating stage of exploratory data analysis (kind of the first date with your new data in the data analysis process…) I felt focusing too much on the code and other technical aspects which distracted me from what I was originally doing: exploring my data to get a better understanding. Going back to the dating analogy it’s like over-thinking what to order and what small-talk topic to bring up next and thereby losing the interest of your possible future partner instead of being focused exclusively on him/her. Not a recipe for success… Continue reading →

The Power of Vectorization in R

I have always been a great fan and avid user of databases. They’re just so versatile, efficient, easy to use, … I found this to be true for all kinds of data, small and large, high-dimensional and low-dimensional, spatial, temporal, you name it. It was only very recently that my data seemed to have outgrown my PostgreSQL database. Not so much in size, but rather in performance.

Continue reading →